Podporiť čarovnú poličku je možné prostredníctvom zobrazovania reklám. Zvážte prosím možnosť vypnutia adblocku a pomôžte nám prevádzkovať túto službu aj naďalej.
Vaša podpora je pre nás veľmi dôležitá a vopred vám ďakujeme za prejavenú ochotu.
Integrály (I. diel)
1x
Integrály (I. diel) Book: Integrály (I. diel)
4 stars - 1
Kniha patrí do série študijných pomôcok vysokoškolskej matematiky. Obsahuje 270 vyriešených príkladov a má pokračovanie v druhom diely, zväzok 26. Tradične sa učí najprv neurčitý integrál ako súbor pravidiel a integrálov z elementárnych funkcií. V knihe je zvolený postup súčasného vysvetľovania oboch tém. Často podintegrálne funkcie (integrandy) sú rovnaké preto, aby študujúci postrehol rovnakosť aj rozdielnosť postupov riešenia. Grafické znázornenie umožňuje zistiť význam výpočtu alebo jeho použitie v praxi. Pokiaľ derivovať vieme skoro každú funkciu, aj jednoduché spojenia funkcií, s integrálom je už na tej istej úrovni problém. Preto v knihe po výpočtoch integrálov z elementárnych funkcií a pri použití jednoduchých pravidiel nasledujú metódy. Spravidla, ako vstupné metódy sa vyučujú: integrovanie substitúciou, metóda per-partes (po častiach) a metóda parciálnych zlomkov. Táto kniha od strany 24 predkladá riešenia uvedenými metódami. Skúsenosť ukazuje, že po preriešení niekoľkých desiatok príkladov, študujúci začína vnímať danú metódu, ale dobré zvládnutie testu či skúšky si často vyžaduje preriešiť aj stovky príkladov.
  1. Slovníky a učebnice

Integrály (I. diel)

Marián Olejár , Iveta Olejárová

Integrály (I. diel)

Marián Olejár , Iveta Olejárová

Na túto knihu čaká momentálne 1 čitateľ

vera25

Aktuálne nikto neponúka túto knihu.

Pozrieť cenu novej knihy na

Chcem predať túto knihu

Chcem si kúpiť, pošlite mi notifikáciu o novej ponuke

Doplnkové info

Popis knihy

Kniha patrí do série študijných pomôcok vysokoškolskej matematiky. Obsahuje 270 vyriešených príkladov a má pokračovanie v druhom diely, zväzok 26. Tradične sa učí najprv neurčitý integrál ako súbor pravidiel a integrálov z elementárnych funkcií. V knihe je zvolený postup súčasného vysvetľovania oboch tém. Často podintegrálne funkcie (integrandy) sú rovnaké preto, aby študujúci postrehol rovnakosť aj rozdielnosť postupov riešenia. Grafické znázornenie umožňuje zistiť význam výpočtu alebo jeho použitie v praxi. Pokiaľ derivovať vieme skoro každú funkciu, aj jednoduché spojenia funkcií, s integrálom je už na tej istej úrovni problém. Preto v knihe po výpočtoch integrálov z elementárnych funkcií a pri použití jednoduchých pravidiel nasledujú metódy. Spravidla, ako vstupné metódy sa vyučujú: integrovanie substitúciou, metóda per-partes (po častiach) a metóda parciálnych zlomkov. Táto kniha od strany 24 predkladá riešenia uvedenými metódami. Skúsenosť ukazuje, že po preriešení niekoľkých desiatok príkladov, študujúci začína vnímať danú metódu, ale dobré zvládnutie testu či skúšky si často vyžaduje preriešiť aj stovky príkladov.

Našli ste chybu?