Podporiť čarovnú poličku je možné prostredníctvom zobrazovania reklám. Zvážte prosím možnosť vypnutia adblocku a pomôžte nám prevádzkovať túto službu aj naďalej.
Vaša podpora je pre nás veľmi dôležitá a vopred vám ďakujeme za prejavenú ochotu.
Econometric Analysis of Cross Section and Panel Data EN
1x
Econometric Analysis of Cross Section and Panel Data EN Book: Econometric Analysis of Cross Section and Panel Data EN
4 stars - 1
The second edition of this acclaimed graduate text provides a unified treatment of the analysis of two kinds of data structures used in contemporary econometric research: cross section data and panel data. The book covers both linear and nonlinear models, including models with dynamics and/or individual heterogeneity. In addition to general estimation frameworks (particularly methods of moments and maximum likelihood), specific linear and nonlinear methods are covered in detail, including probit and logit models, multinomial and ordered choice models, Tobit models and two-part extensions, models for count data, various censored and missing data schemes, causal (or treatment) effect estimation, and duration analysis. Control function and correlated random effects approaches are expanded to allow estimation of complicated models in the presence of endogeneity and heterogeneity.
  1. Knižky v cudzom jazyku

Econometric Analysis of Cross Section and Panel Data EN

Jeffrey M. Wooldridge

Econometric Analysis of Cross Section and Panel Data EN

Jeffrey M. Wooldridge

Na túto knižku aktuálne nikto nečaká, máš záujem ty?

Aktuálne nikto neponúka túto knihu.

Pozrieť cenu novej knihy na

Chcem predať túto knihu

Chcem si kúpiť, pošlite mi notifikáciu o novej ponuke

Doplnkové info

Popis knihy

The second edition of this acclaimed graduate text provides a unified treatment of the analysis of two kinds of data structures used in contemporary econometric research: cross section data and panel data. The book covers both linear and nonlinear models, including models with dynamics and/or individual heterogeneity. In addition to general estimation frameworks (particularly methods of moments and maximum likelihood), specific linear and nonlinear methods are covered in detail, including probit and logit models, multinomial and ordered choice models, Tobit models and two-part extensions, models for count data, various censored and missing data schemes, causal (or treatment) effect estimation, and duration analysis. Control function and correlated random effects approaches are expanded to allow estimation of complicated models in the presence of endogeneity and heterogeneity.

Našli ste chybu?